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Abstract
The spectrum of ion density fluctuations in a strongly coupled plasma is
described both within the static G(k, 0) and high-frequency G(k,∞) local
field approximation. By a direct comparison with molecular dynamics data,
we find that for large coupling, G(k, 0) is inadequate. Based on this result, we
employ the Zwanzig–Mori memory function approach to model the Thomson
scattering cross section, i.e. the electron dynamic form factor See(k, ω) of a
dense two-component plasma. We show the sensitivity of See(k, ω) to three
approximations for G(k, ω).

PACS numbers: 52.27.Gr, 52.25.Mq, 52.35.Lv, 52.38.−r

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We are interested in the dynamical properties of solid-density plasmas, which can be created
with short-pulse lasers. Such plasmas may be strongly coupled, as characterized by a ratio
of the potential to the kinetic energy per particle larger than one. The dynamical properties
depend on the intricate details of various interaction processes that are affected by strong
correlations. Furthermore, the dynamical properties can be used, in principle, as a diagnostic
of the solid-density plasma if the scattered spectrum of radiation can be predicted. For example,
in analogy with dilute-plasma diagnostic, Thomson scattering (TS) from free electrons may
yield information about the density and temperature of the plasma [1] and, in turn, provide a
delicate test of our understanding of dynamical and transport properties of strongly coupled
systems. Recently, experiments have been performed in the strongly coupled plasma regime
[2], where most theoretical approaches do not apply.

An important quantity is the spectrum of the electron density–density fluctuations, the
so-called dynamic structure factor See(k,w), since it is directly probed in TS (here k and
ω are, respectively, the wave vector and the frequency of the electron density fluctuations).
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There have been a few descriptions of See(k,w) in the strongly coupled regime. For example,
Boerker, Lee and Rogers (BLR) [3] have used a ‘generalized Vlasov approximation’ to predict
the position of the collective modes. The applicability of this approach is investigated in
section 2. By applying projection operator techniques to kinetic equations, Linnebur and
Duderstadt (LD) [4] were able to generate exact equations describing density fluctuations in a
two-component plasma in thermal equilibrium. The equations reduce to the coupled linearized
Vlasov equations augmented by additional terms which characterize collisions; the different
applications proposed so far [4, 5] also depend upon the various Coulomb logarithms, just as
the more traditional collision models do. A similar approach was taken by Gregori et al [6]
to describe the charge density fluctuations in several approximations. In both cases, however,
correlations were accounted for in the Debye–Hückel approximation.

In this paper, we first illustrate the difficulty of constructing a theory of See by studying
the effect of coupling on the collective ionic dynamics in a simple model. We also introduce
the concept of an effective interaction, as described through a local field correction (LFC).
We show that the static LFC, as used by BLR, is not satisfactory for describing the effects of
strong coupling on the TS cross section at moderate k and ω. The concept of LFC is intimately
connected with the concept of memory functions that appears when the dynamics of physical
quantities are written in terms of a generalized Langevin equation. In section 3, we use
such a memory function approach, usually referred to as the Zwanzig–Mori (ZM) formalism
[7, 8], to generate improved models of TS. The sensitivity of See to the models is illustrated
in a comparison of three different approximations. Note that here we ignore certain physical
processes and corrections that may be important in some experiments such as atomic processes
[9] or Compton scattering [10]. It is important to mention, however, that plasmas dense enough
to be strongly coupled may be most easily diagnosed with short-wavelength radiation and the
simplified model we employ here must be extended.

2. Local field corrections and ion-acoustic waves

In a two-component plasma, peaks occur in the electron–electron dynamic form factor
See(k, ω) as a result of the collective behaviour of electrons and ions. In particular, at
low frequency, a peak occurs as a result of electrons following the collective motion of the
ion subsystem to maintain quasineutrality. The underlying ion wave, the ion-acoustic wave
(IAW), is likely to display the effects of strong coupling more prominently than the electron
wave since the ions are often cooler and have higher charge states Z. It is therefore of interest
to begin by studying the properties of this feature in the cross section, and we do so by
considering the spectrum of ion density fluctuations S(k, ω).

To model this regime, we describe the plasma as a collection of particles, the screened
ions, interacting through a Yukawa pair potential v(r) = �

βr
exp(−κr), where κ−1 = (akDe)

−1

is the electron screening length and � = (Ze)2/kBT a is the Coulomb coupling parameter.
In this section lengths are written in units of the ion-sphere radius a = (3/4πn)1/3 (n is the
particle density) and frequencies in units of the plasma frequency ωi = ( 4π(Ze)2n

m

)1/2
. S(k,w)

can be evaluated using the fluctuation–dissipation theorem,

ωiS(k,w) = − 2

nβω
Im χ(k,w). (1)

The response function χ(k, ω) can be exactly written in terms of a reference system, χ0(k, ω),
usually taken as the free particle system, and a frequency and wave vector dependent, complex
effective potential V (k, ω) = v(k)(1 − G(k, ω)) such that
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χ(k, ω) ≡ χ0(k, ω)

1 − v(k)(1 − G(k, ω))χ0(k, ω)
. (2)

Here G(k, ω) is the so-called dynamic local field correction (LFC) and v(k) is the Fourier
transform of the pair potential and βnv(k) = 3�

k2+κ2 .
In the generalized Vlasov approximation, the effective potential V (k, ω) is taken to be real

and ω-independent, which amounts to replacing the original pair interaction by an effective
(renormalized) interaction, V (k, ω) = veff(k). Within such an approximation, only static
effects arising from strong coupling are taken into account. Although it may reproduce
reasonably well the dispersion of collective modes, it is incapable of accounting correctly
for the damping of these modes. In practice, veff(k) is chosen to obey specific sum rules (to
the accuracy that the static properties, in particular the pair distribution, are known). Two
common approximations are the static local field correction (SLFC) and high-frequency local
field correction (HFLFC). In their approach, BLR used the SLFC, which amounts to replacing
the pair interaction by veff(k) = v(k)(1 − G(k, 0)),

G(k, ω) → G(k, 0) = 1 − 1

v(k)

(
1

S(k)
− 1

)
. (3)

This approximation guarantees that the sum rules 〈ω0(k)〉 and 〈ω2(k)〉 are exactly satisfied1,
where 〈ωn(k)〉 = ∫

dω
2π

ωnS(k, ω).
Note that 〈ω0(k)〉 = S(k) is the static structure factor. The SLFC is directly related to

the isothermal compressibility χT = β

n
limk→0

1
1+v(k)(1−G(k,0))

[11]. Thus, the LFC acts as a
nonlocal (k-dependent) renormalization of the compressibility and, in turn, of the phase speed
cL ∝ χ

−1/2
T of the longitudinal wave. The SLFC is thus expected to yield a very good estimate

of the dispersion relation of the collective longitudinal mode as k → 0. However, as we will
see, its range of validity at higher k and the dependence of this range on the coupling parameter
� is strongly limited. Indeed, as k → 0, the dynamics of the modes are strongly affected
both by processes involving time scales not short compared to the hydrodynamic characteristic
times and by nonlocal effects, which arise when the range of correlations becomes of the order
of k−1.

In the HFLFC approximation, the strong coupling behaviour is treated in a high frequency
approximation defined by

G(k, ω) → G(k,∞) = 1 − 3�
k2 + κ2

k4

(
〈ω4〉(k)

/
ω4

i − k4

3�2

)
. (4)

Now 〈ω2(k)〉 and 〈ω4(k)〉 are automatically satisfied, but the sum rule 〈ω0(k)〉 = S(k) is
not. In particular, HFLFC does not yield the exact isothermal compressibility χT and, in
turn, is surely incapable of describing the acoustic part of the dispersion relation near k = 0.
However, as we will see, this simple argument does not make HFLFC a bad approximation of
the dispersion relation of the IAW over the entire k-range.

In figure 1, we compare the dispersion relation of the longitudinal mode as obtained from
molecular dynamics (MD) simulations [12] with calculations using the SLFC and HFLFC
approximations. In both SLFC and HFLFC calculations, the dispersion relation has been
obtained both from the peak of S(k, ω) (see equation (1)), and from the simple estimates

ω(k)/ωi = k

√
1 − G(k, 0)

k2 + κ2
(SLFC) (5)

ω(k)/ωi = k

√
1 − G(k,∞)

k2 + κ2
(HFLFC). (6)

1 The second-moment sum rule is independent of the potential. It is thus automatically satisfied, irrespective of the
choice of the DLFC.



6268 J Daligault and M S Murillo

Figure 1. Dispersion relation for the longitudinal mode for a Yukawa system with � = 144 and
κ = 0.3. Points are molecular dynamics results with error bars indicating the width at half the peak
value. The curves correspond to the theoretical predictions: solid blue (red) is the SLFC (HFLFC)
dispersion relation equation (5) (equation (6)); blue triangles (red) are the peaks of S(k,ω) in the
SLFC (HFLFC) approximation. HFLFC leads to considerably better results than SLFC.

The latter expression, equation (6), can be shown to be closely related to mode dispersion in
amorphous solids and liquids [13], and is sometimes referred to as the quasilocalized charge
approximation (QLCA) [14]. In the example considered here the system is quite strongly
coupled: � = 144, κ = 0.3, which corresponds to an effective (screened) coupling parameter
�eff ≡ � exp(−κ) ≈ 106 [12]. As compared with the MD results, one sees that HFLFC
leads to considerably better results than SLFC, which was used in the BLR model. Note also
that the dispersion relation is somewhat sensitive to using the peaks of S(k, ω) versus simple
estimates. Even though HFLFC is better, it does not yield the correct compressibility relation
for k → 0. Only ω-dependent approximations for G(k, ω) can be expected to be consistent
with the correct limits.

In this section we have considered the IAW spectrum within the Yukawa model only. In
reality, plasmas are multicomponent systems for which the electron plasma wave also serves
as a useful diagnostic. Moreover, the electron and ion dynamics are coupled and various
collision processes affect them. We therefore need to generalize the ideas of this section to
electron–ion systems. This is the goal of the next section.

3. Multicomponent theory

3.1. Theory

Here we consider a (neutral) dense strongly coupled TCP consisting of electrons e (charge −e,
mass me, density ne) and ions i (Ze,mi, ni = ne/Z). For simplicity, the system is assumed
to be in equilibrium (temperature β = 1/kBT ). Moreover, we treat the system classically,
although the formalism presented here can be straightforwardly extended to the fully quantal
case. In practice, of course, the TCP cannot be treated wholly classically since the ion–electron
attraction leads to a collapse; the bare Coulomb potentials are usually replaced by effective
potentials vab which account for diffraction and symmetry effects in an approximate way [15].
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The ZM formalism [7, 8] gives the equations of motion for the fluctuations δAj(t) of
predetermined relevant variables in the form of a generalized Langevin equation. This, in
turn, leads to a memory function equation for the correlations between the fluctuations. When
applied to the densities of particles Aj = nj , this approach offers transparent schemes of
approximation of the density fluctuation spectrum in a plasma. An attractive property of the
memory function equation is its representation as a continued fraction [16, 17] whose terms
depend uniquely on the moments of the correlations functions, the sum rules. The continued
fraction representation permits one to make approximations, while satisfying several sum
rules. Models for TS, i.e for See(k, ω), are then deduced from the fluctuation–dissipation
theorem.

The central quantity for TS is the electron–electron dynamic structure factor See(k,w).
Within linear response theory, the fluctuation-dissipation theorem relates the dynamic structure
factor to the electron–electron response function χee

See(k,w) = − 2

ρβω
Im χee(k, z = ω) (7)

where ρ = ne + ni is the total number density of particles. In the following, we use the ZM
formalism to generate models for χee.

In view of the importance of the electron–ion coupling, it is worth writing the linear
response of the TCP in terms of the response

A(k, t) =
(

δne(k, t)

δni(k, t)

)
(8)

of vector of the Fourier components of the density fluctuations δne and δni . The information
we require is contained in the correlation matrix ã(k, t) with elements (a, b = e, i)

ãab(k, t) = 〈Aa(k, t), Ab(k, t = 0)〉 (9)

where 〈· · ·〉 denotes the statistical average. Indeed, according to linear response theory [11],
if χ̃ denotes the matrix of the density–density response functions (χab), then the Laplace
transforms χ̃(k, ω) and ã(k, z) are related such that (the dot denotes the matrix product and 1̃
the unit matrix)

χ̃(k, z) · χ̃−1(k) = izã(k, z) + 1̃. (10)

As stated before, the ZM formalism allows one to write the equation of motion of the correlation
matrix ã(k, t) which, in the Laplace space, can be represented in the form of a continued
fraction (here of matrices) such as [18]

ã(k, z) = (−iz1̃ + b̃1(k, z) · 	̃1(k))−1

b̃1(k, z) = (−iz1̃ + b̃2(k, z) · 	̃2(k))−1. (11)

· · ·
In equation (11), the coefficient matrices 	̃ν(k) depend only on the static properties of the
system through the sum rules〈

ωn
ab(k)

〉 =
∫

dω

2π
ωnSab(k, ω). (12)

In particular, in matrix notation,

	̃1(k) = 〈ω2(k)〉 · 〈ω0(k)〉−1 (13)

	̃2(k) = 〈ω4(k)〉 · 〈ω2(k)〉−1 − 〈ω2(k)〉 · 〈ω0(k)〉−1. (14)

Thus, the determination of ã(k, z) is transformed to that of the matrices 	̃ν .
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This representation of the correlation matrix provides a suitable starting point for
developing approximations of χ̃ . This fact was exploited by Hong and Kim (HK) for a
one-component plasma [18]. First, by generalizing the concept of LFC discussed in the
previous section, it is convenient to express the matrix χ̃ in terms of a matrix Ṽ eff(k, z) such
that

χ̃ = χ̃0 · (1 − Ṽ eff · χ̃0)
−1 (15)

where χ̃0 corresponds to the response function matrix for a free-particle TCP. Applying the
continued fraction equation (11), one obtains

Ṽ eff(k, z) = χ̃−1
0 (k, z) − χ̃−1(k, z)

= (
χ̃−1

0 (k) − χ̃−1(k)
)

+ izχ̃−1
0 (k) · 	̃−1

0,1 · (b̃2 · 	̃2 − b̃0,2 · 	̃0,2) (16)

for the matrix Ṽ eff . The effects of the strong electron–ion coupling on the TS cross section
appears through the effective potential as (z = ω)

See(k, ω) = − 2

nβω
Im

{
χ0,e(k, ω)

[
1 − V eff

ii (k, ω)χ0,i (k, ω)
]

D(k, ω)

}

where

D(k, ω) = [
1 − V eff

ee (k, ω)χ0,e(k, ω)
] [

1 − V eff
ii (k, ω)χ0,i(k, ω)

]
− (

V eff
ei (k, ω)

)2
χ0,e(k, ω)χ0,i (k, ω). (17)

3.2. Approximations for V eff(k, ω)

In this section, we describe four parameter-independent approximations which can be devised
from equation (16).

• RPA with semiclassical potentials. If we choose

V eff
ab (k,w) = vab(k) (18)

we are led to the Vlasov approximation. Effective semiclassical potentials vab can be
used instead of the bare Coulomb potentials [7].

• Static local field correction (SFLC). If we choose to satisfy
〈
ω0

ab(k)
〉

and
〈
ω2

ab(k)
〉

(equation (12)) we are led to

Ṽ eff(k,w) = Ṽ eff(k, 0) = (
χ̃−1

0 (k) − χ̃−1(k)
)
. (19)

The approximation, which is the generalization of equation (3), amounts to setting
b̃2 · 	̃2 = b̃0,2 · 	̃0,2 in equation (16). The matrix χ̃(k) = χ̃(k, ω = 0) is given in
terms of the static form factor Sab(q) as

χab(k) = −βρSab(q). (20)

In practice, the Sab(q) can be calculated by using the multicomponent hypernetted chain
equations.

• High-frequency local field correction (HFLFC). If we choose to satisfy
〈
ω2

ab(k)
〉

and〈
ω4

ab(k)
〉

we are led to

V eff
ab (k, ω) = V eff

ab (k,∞). (21)

As in equation (4), the effective potential can be expressed uniquely in terms of the second-
(n = 2) and fourth-order (n = 4) sum rules [19]. For strong coupling we anticipate that
(21) is superior to (19), as illustrated in figure 1.
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(a)

(c)

(b)

(d )

Γ=0.5 and kai = q = 0.78 Γ=0.5 and kai = q = 1.00

Γ=2 and kai = q = 1.0 Γ=2 and kai = q = 0.78

Figure 2. Electron dynamic form factor See(k,ω) plotted against frequency normalized to ωpe

(double logarithmic scale) of hydrogen with � = 0.5 (upper part) and � = 2 (lower part).

A further step could be achieved by imposing the three sum rules
〈
ω0

ab(k)
〉
,
〈
ω2

ab(k)
〉

and〈
ω4

ab(k)
〉

to be satisfied. To this end, one could follow for instance the recipe given by HK in
[18] and extend it to encompass the TCP. This approximation amounts to setting b̃2 = b̃f,2,
where b̃f,2 can be calculated from χ̃0(k, z) using equations (10) and (11). Note that recently
Wierling et al [20] have developed the HK approach for OCPs in terms of an unknown damping
parameter; results of their fits to MD data indicate that there is no obvious trend in the damping
parameter with variations in coupling. Another approach to satisfy the three sum rules has
been given by Ichimaru et al [21]; unfortunately, this introduces three unknown functions
τi(k). The approximations SLFC and HFLFC are the limits τi(k) → 0 and τi(k) → ∞,
respectively.

As an illustration of the sensitivity of the results on the different approximations, we
compare in figure 2 the dynamic structure factor See(k, ω) for hydrogen as obtained from
calculations using the four approximations: RPA with semiclassical potentials [15], SLFC,
HFLFC and HK. Two Coulomb coupling parameters � = 0.5 and � = 2 and, for each �,
two wave vectors k = 0.78/ai and k = 1/ai are considered. The above models require the
first sum rules

〈
ωn

ab(k)
〉

as input information (n = 0, 2 for SLFC, n = 2, 4 for HFLFC and
n = 0, 2, 4 for HK). This is accomplished here from the solution of the multicomponent
hypernetted chain (HNC) equations [11]. Although the differences in the approximations are
not large for � = 0.5, they are significant for � = 2 and mostly for the ion-acoustic feature.
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4. Conclusion

The importance and range of applicability of TS as a plasma diagnostic depend on the accuracy
of the theory. The difficulty of constructing a theory of TS for dense strongly coupled plasmas
has been illustrated in a simple model of the IAW. We have shown that the static local
field correction, as used by BLR, needs improvement in order to describe the effects of
the strong coupling. To this end, we have compared the dispersion relation obtained with
molecular dynamics simulations to results given by both the static and high-frequency local
field approximations. In particular, for the case studied, HFLFC compares far better to MD
results than SLFC. An open question is the validity of either SLFC or HFLFC for moderate
coupling at finite k, ω.

Then, we have found it suitable to base the development of a theory of TS in strongly
coupled TCP on the ZM formalism. In this way, one can easily satisfy the continuity equation,
the compressibility sum rule and the fourth frequency moment, irrespective of the choice of
the detailed form of the function b2(k) in equation (16).

The particular approximations studied were presented to illustrate the potential of the
ZM approach, more particularly of the continued fraction representation, for modelling the
TS cross section. More refined models will be developed in a future publication [19] which
will allow for arbitrary ion charge Q and for two-temperature plasmas (Ti �= Te). Direct
comparison with MD data will allow us to assess various models for the diagnostics of dense
strongly coupled plasma.
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